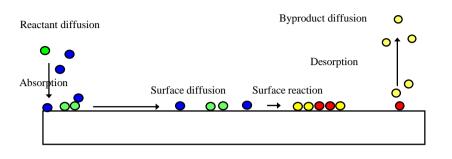
EE 527 MICROFABRICATION

Lecture 10 Tai-Chang Chen University of Washington

CHEMICAL VAPOR DEPOSITION (CVD)

- Chemical vapor deposition:
 - Transport of reactant species into the reactor : the source materials are brought into the reactor in the gas phase.
 - Diffuse to the substrate surface
 - React to deposit film at substrate surface
 - Desorbed and pump away the reaction by-products
- Three major techniques of CVD:
 - APCVD: atmospheric pressure
 - LPCVD: low pressure
 - PECVD: plasma enhanced



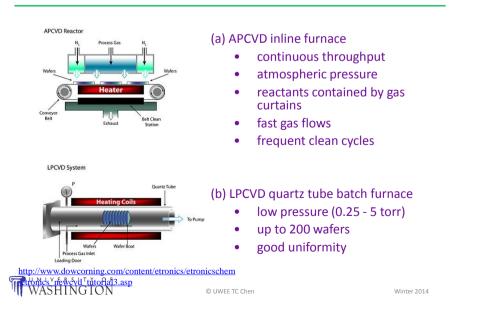
© UWEE TC Chen

Winter 2014

 1_{1}

CVD/CVD PROCESS FLOW

Three major CVD Techniques


- APCVD: atmospheric pressure (mass-transport-limited)
- LPCVD: low pressure (surface-reaction-limited)
- PECVD: plasma enhanced (mass-transport-limited)

(Ĉ)	UWFF	TC	Chen

Winter 2014

CVD/LPCVD AND APCVD EQUIPMENT

CVD/CVD PROPERTIES

General CVD

- Films are generally less dense, include hydrogen
- Higher etch rates
- Films usually under tensile stress
- Films are quite conformal

Plasma enhanced CVD

- Some sputtering (conformality controllable by deposition / sputter rate)
- Low temperature process (about 100 400°C)

© UWEE TC Chen

Winter 2014

CVD/CVD POLYSILICON

CVD Poly-silicon

- Pyrolysis of silane: $SiH_4 \rightarrow Si + 2H_2$
 - LPCVD Process 1: 100% SiH₄, 0.2 1.0 torr
 - LPCVD Process 2: 30% SiH₄ in nitrogen, 0.2 1.0 torr
 - deposition rates: 10 20 nm/min
 - APCVD: 3% SiH₄ in nitrogen
- Caution: SiH₄ (silane) is pyrophoric, explodes when in contact with air

© UWEE TC Chen

CVD/CVD POLYSILICON

CVD Poly-silicon

- Amorphous (< 600°C) or polycrystalline (> 600°C)
- Gate electrode in MOS devices (not anymore after 2007)
- Resistors, conductors in IC
- Structural material in MEMS
- Doping possible by
 - diffusion (atoms moving through crystals / solids)
 - implantation (impingement of high energy ions)

© UWEE TC Chen

Winter 2014

DETOUR: LAB SAFETY

FLAMMABILITY RANGE

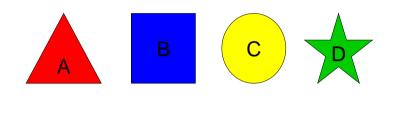
- Upper Explosive Limit (UEL)
- Lower Explosive Limit (LEL)
 - volume percent of substance in air that will sustain combustion
- Flammable Range: UEL LEL, in percent
 - Example: Silane
 - UEL = 98.0% above this concentration, the mixture is too rich to burn.
 - LEL = 1.5% below this concentration, the mixture is too lean to burn.

© UWEE TC Chen

Winter 2014

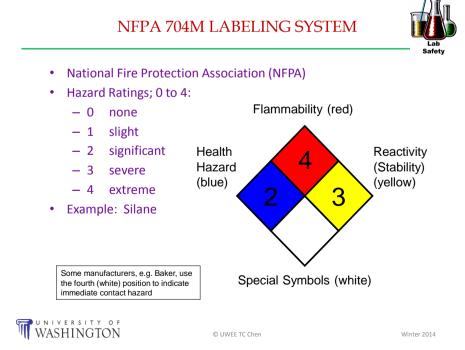
FLAMMABILITY POINTS

- <u>Flash Point</u>: minimum temperature where a spark or flame will cause an instantaneous flash in the vapor space above a liquid
- <u>Fire Point</u>: minimum temperature of a liquid to support continuous combustion after ignition via a spark or flame
- <u>Autoignition Point</u>: minimum temperature at which a liquid spontaneously ignites without the introduction of a spark or flame
 - Example: Silane
 - autoignition point (AP) = <21 C
 - fire point = [usually about 20 C higher than the FP]
 - flash point (FP) = extremely flammable gas



© UWEE TC Chen

FIRE CLASSIFICATIONS



- Class A common combustibles that leave coals or embers
- Class B flammable liquids and gases
- Class C fires in energized electrical equipment
- Class D combustible metals: Al, Mg, Li, Na, K, Ti, Zr

PECVD LPCVD					
Deposition	SiH ₄ +O ₂	SiH ₄ +O ₂	TEOS	SiCl ₂ H ₂ +N ₂ O	Thermal
Temp °C	200	450	700	900	1000
Composition	SiO _{1.9} (H)	SiO ₂ (H)	SiO ₂	SiO ₂ (CI)	SiO ₂
Step coverage	nonconf.	nonconf.	conf.	conf.	conformal
Thermal stability	loses H	densifies	stable	loses Cl	stable
Density (g/cm ³)	2.3	2.1	2.2	2.2	2.2
Refractive index	1.47	1.44	1.46	1.46	1.46
Stress (10 ⁴ N/cm ²)	3C-3T	3T	1C	3C	3C
Dielectric strength (10 ⁶ V/cm)	3-6	8	10	10	11
Etch rate (nm/min) 100:1 H ₂ O:HF	40	6	3	3	2.5
Dielectric constant	4.9	4.3	4.0	-	3.9

CVD/CVD SILICON DIOXIDE

from S. M. Sze, VLSI Technology

WASHINGTON

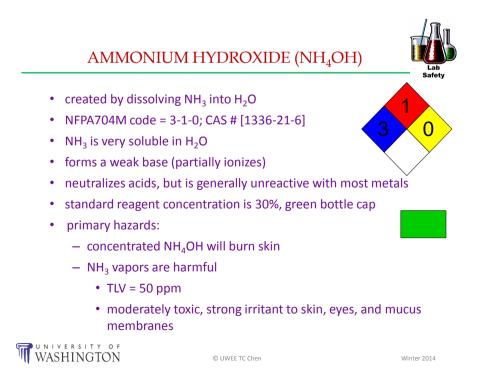
© UWEE TC Chen

Winter 2014

CVD/CVD SILICON NITRIDE

- Amorphous dielectric, high resistivity
- Good barrier to diffusion
- $3SiH_4 + 4NH_3 \rightarrow Si_3N_4 + 12H_2$
- $3SiCl_2H_2 + 4NH_3 \rightarrow Si_3N_4 + 6HCl + 6H_2$

© UWEE TC Chen


CVD/CVD SILICON NITRIDE

Deposition	LPCVD	Plasma
Temperature °C	700 - 800	250 - 350
Composition	Si ₃ N ₄ (H)	SiN _x H _y
Si/N ratio	0.75	0.8 - 1.2
Atom % H	4-8	20 - 25
Refractive index	2.01	1.8 - 2.5
Density (g/cm ³)	2.9 - 3.1	2.4 - 2.8
Dielectric constant	6 - 7	6 - 9
Resistivity (Ω-cm)	10 ¹⁶	10 ⁶ - 10 ¹⁵
Dielectric strength (10 ⁶ V/cm)	10	5

from S. M. Sze, VLSI Technology

© UWEE TC Chen

